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ABSTRACT

This paper derives a model of diffuse and specular illumination in arbitrarily large dimensions,
based on a few characteristics of material and light in 3-space. It then describes how to adjust for
the anomaly of excess brightness in large codimensions. If a surface is grooved or furry, it can be
illuminated with a hybrid model that incorporates both the ID geometry (the grooves or fur) and
the 2D geometry (the surface).
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1 Introduction

When a geometric object possesses a distinct (outward) unit normal at each point, the familiar
models of illumination can be applied to the object. When the object is in a large dimensional
space, the space of unit normals has two or more dimensions (that is, the codimension of the
object is at least two) and the illumination model must be extended; examples include curves in
3-space and 4-space, or surfaces in 4-space and higher.

This paper addresses the problem of applying light in large codimensions. Consider an object of
dimension k>O in Euclidean space of dimension n>k. The difference n-k is the codimension of
the object. Mathematicians use the term k-manifold to denote the k-dimensional generalization of
curves (1-manifolds) and surfaces (2-manifolds). Every neighborhood of a k-manifold is homeo-
morphic with Euclidean k-space.

Regarding codimension 1, popular texts on computer graphics [Foley90] [Rogers85] handle the
special case of k=2 and n=3: these are ordinary surfaces in 3-space. Other authors [Carey87]
[Steiner87] have noted that whenever the codimension is 1, each point of a manifold can be natu-
rally assigned a normal vector. The usual lighting equations then prevail. (Special care is required
for non-orientable manifolds or manifolds with boundary, since their "frontfacing" elements are
not well defined.)

Regarding codimension 2, several authors have considered the case of k= 1, n = 3 for illuminating
fur [Kajiya85], hair [Anjyo92] [Miller88] [LeBlanc9l] [Watanabe92], or anisotropic grooves on
a surface [Kajiya89] [Poulin90] [Westin92] [Ward92]. The case k=2, n=4 has been studied in the
"Fourphront" system [Banks92] [Banks93] and also by Hanson [Hanson93] for examining a
variety of surfaces in 4-space. Kajiya and Hanson testify that this model is not based on physical
principles, calling it an "ad hoc" and "heuristic" result, respectively. But in fact the Kajiya-
Hanson model can be derived from a few physical principles. This is the subject of section 2.

In daily life one encounters illuminated surfaces everywhere. It is reasonable to believe that the
human visual system is especially well designed to infer shape from the shading of 2-dimensional
surfaces in 3-space [Hom89]. If surfaces in 3-space represent the ideal for visual comprehension,
the Kajiya-Hanson model suffers from peculiar drawback: manifolds are "too bright" when the
codimension grows larger. Section 3 explains the cause and presents a simple remedy to the
problem.

Kajiya noted the importance of global illumination effects (in the form of attenuation and
shadows) for rendering textured volume elements. Section 4 shows how the combination of a
manifold together with a vector field (like a surface together with fur) can be illuminated to simu-
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late global effects. The technique can be incorporated into a simple object-order (e.g., polygon)

renderer.

2 The Model for Large Codimenslons

The final results of this section will be equations for diffuse and specular illumination that are

equivalent to the results that Kajiya and Hanson have presented [Kajiya89] [Hanson93]. The new

contribution that this section offers is a physical motivation to the derivation. The conventional

motivation begins by promoting the dimension of a manifold, illuminating the promoted mani-
fold, and integrating. The new motivation dispenses with the promotion and integration steps

altogether. It proceeds directly from the geometry to the illumination solution, without regard to

the participating dimensions.

The following discussion makes heavy use of the tangent space T and the normal space N at a

point p on a k-manifold M in n-space (see Figure 1). The space T is the vector space tangent to a

point in M. It has dimension k, matching that of the manifold M. The space N is orthogonal to T
and has dimension c (the codimension of M). The dimensions of T and N add up to the dimension

n of the entire space, of course.

2.1 Conventional Motivation

The benefit of codimension 1 is that there exist only two unit normals in a point's I-dimensional
normal space. The usual illumination equations require the modest choice of one of the two. If

the codimension is large, there is no clear way to select one unit normal from the infinitude that

are available. There is a clever solution that other authors have adopted: the dimension of the

manifold can be promoted to reduce the codimension.

Let Sn(r) denote an n-sphere of radius r. A circle of radius 10 is then S1(10); a unit sphere is S2(l),
or simply S2. Kajiya, Hanson, and others have proposed that illuminating a k-manifold M of codi-
mension c> 1 can be accomplished after forming the cross-product of M with S`'1(r). It is
required that S`-(r) lie within the normal space N. A point is thus promoted to a circle in 2-space
or to a sphere in 3-space; a curve is promoted to a tube in 3-space; a surface is promoted to a

volume in 4-space.

The advantage of promoting M to M" = MxS" 1(r) is that the promoted manifold has codimension
1. This represents the simple case where the usual lighting equations prevail. The promoted

manifold M' can provide an effective representation of M with no further processing. But to
render M itself, one must employ a scheme whereby a point p in M inherits the illumination of its

fiber pxSC' (r) in M'. A reasonable way to accomplish that goal is to integrate the intensity of the

reflected light over pxSC '(r) and then to average it. The average intensity is obtained by dividing
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the integrated intensity by the measure of the fiber as seen by the eye. This measure can be a
length, an area, a volume, or so forth, in accordance with the dimension c- 1 of the sphere S'>I(r)

(used in the cross product) over which the average is taken. The limit of the average, as r--,

yields a reasonable intensity for the point p.

There are two drawbacks to this approach of promoting M to M', integrating, and then averaging.

First, the integration is unwieldy for c> 1, due to the specular term in the integrand. Second, the

projected measure of SC'I(r) is view-dependent. This opposes the notion that diffuse reflection is
view-independent. For example, in derivation (13) of [Kajiya89j, the integrated intensity over a

fiber pxS1 (r) of M' is calculated to be

l'diffutse kd r L LN p sin0 dO

= kd 2r L LN

where kd is the diffuse coefficient, L is the light vector, and LN is the projection of L onto N
(Figure 1). Under a parallel projection, the arclength of the circle can vary from 2r (viewing the

tube from the side) to nr (viewing the tube end-on). So the average intensity ranges between a
minimum of 2hi kd L. LN and a maximum of kd L LN according to the viewing angle. Kajiya

avoided this problem by treating the quantity kd 2r/projectedArclength(r) as a constant, giving a
diffuse quantity of

ldiffuse = KdL'LN

for a point on the original manifold M.

2.2 Principles for Diffuse Reflection

One can, in fact, justify Kajiya's result by characterizing diffuse reflection in the following way.
A neighborhood of a point p absorbs energy from the incoming light (which delivers lsource per

unit cross section), and then it re-radiates a fraction kd of the absorbed energy. How much energy

LN T

T

Figure 1. Light shines in direction L at a point p on a tube. LN is the projection of the light onto the normal space N. The diffuse
reflection is integrated over the visible portion of the circle S'.
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does the beam deliver to a unit-neighborhood of p? That depends on the cross section of the beam
and the angle it makes with the tangent plane (Figure 2).

Suppose an incident light beam strikes M at p. The light vector L (pointing in the direction that
the beam propagates) projects orthogonally onto the tangent space T at p to produce the vector
Up. The two vectors form an angle a(L, Lr). Simple trigonometry shows that a unit neighborhood
of the tangent space intercepts a beam whose cross-section has measure sin(a). Note that this
quantity is never negative, since a vector can be no more than 900 from the tangent space. The
manifold re-radiates kd of the energy delivered by the beam's cross-section. Thus the diffuse
component of reflection at p is given by

(1) Idiffuse = kd 'source sin a(L, LT).

This solution is essentially the same as Kajiya's: the sine (measured against T) and cosine

(measured against N) are equal.

The principles for this result are (1) the re-radiated light's intensity varies with the energy deliv-
ered by the incident beam; and (2) the manifold re-radiates isotropically.

Equation (1) is purely local, neglecting any effects of shadowing (even self-shadowing). For a
closed surface in 3-space, it is common practice to clamp the diffuse term to zero when the
surface normal points away from the light source. This is best regarded as a "global" calculation.
A very thin surface does re-radiate light both forward and backward, as the local model predicts.

Moreover, when the codimension is larger than 1, the unit normals form a connected set. In that
case there is no "front" or "back" side of the manifold. Local two-sidedness is an exclusive prop-
erty of codimension one.

2.3 PrIncIples for Specular Reflection

The characteristic of a specular highlight is that it indicates locations on a manifold where the
angle between the reflection vector R and the view vector V is zero. One can use an exponential
function to condense the reflected intensity into the region where this angle is small (Phong

L•

Figure 2. Light shims in direction L at a point p. LT is the projection of the light onto the tangent qae T. The beam strikes a unit
neighborhood of p at an angle a.
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lighting). The only problem is how to determine an appropriate unit-length reflection vector R

when the codimension exceeds 1: there are infinitely many to choose from.

A simple principle to invoke is that fight, in a uniform medium, follows a path of (locally)
minimum length. To see how the principle applies to a ray of light reflecting from a tangent space

T, consider a point source q that shines on the point p and bounces to reach a point u (Figure 3).
The segments from q to p and from p to u are straight-line paths, so individually they satisfy the

minimal-distance criterion.

The total distance must be a local minimum as well. If the points were all in a plane the problem

would be very easy: the angles a=L(q p qT) and b=Z(u p UT) must be identical, with the

tangent projections qT and uT lying on the opposite sides of p. The actual situation is nearly this

simple. If u-p really is a reflection vector then a path from q to u via a nearby point p+s in T

must be longer than the path via p. That immediately forces qT, p, and UT to be colnear. To see

why, consider choosing s off of the line ET qT" If p lies on iT qT then perturbing the path over to
p+s increases the base length of each triangle (by the Cauchy-Schwartz inequality), hence

increasing each hypotenuse, and hence increasing the total path-length. So the triangles

(Figure 3) lie in the planes (q UT qT) and (u iiq).

Now consider the situation when b=a. What happens when p is perturbed (in the line iT-T) over

to some p+s(qT-UT)? The trigonometry is exactly the same as for the "easy" case of the plane.

The total distance D(s) is parametrized by s:

D(s) = d(q, p+s(qT-UT)) + d(p+s(qT-UT), u)

A straightforward application of trigonometry and calculus demonstrates that the total distance is

a local minimum. One must simply verify that ± D(s) = 0 when s-=0. As a result, b=a.

The unit vectors L and R consequently have identical tangent components, so the first require-

ment on a unit reflection vector R is that RT=Lr. If the codimension is 1, there are two such
"reflection" vectors, R+ and R-; R+ is the continuation of L transmitted through T (for opaque
manifolds of codimension 1, this solution is ignored). When the codimension is 2, the set of all

q U

Figure 3. A ray of light emanates from q, strikes the tangent space T at p. and reflects to u. If the total path has minimum length,
angles a and b are equal.
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reflection vectors forms a cone-shaped family R (Figure 4). The unit reflection vectors from R

project to a circle in the normal space N. In general, the unit reflection vectors project to S'- 1(r) in

N when the codimension is c.

What is the angle between the view vector V and the space R of reflections? It is the angle

between V and the closest vector R in R. This vector is easy to find. A unit reflection R can be

expressed by its tangent and normal components RT=Iqr and RN. The unit view vector can be

likewise decomposed into VT and VN.

The components VT, VN, and RT are all fixed, so the distance between R and V is minimized
when 11RN-VNII is minimized. That occurs when RNand VN are collinear: RN= XVN for some

scalar X. To see why this is minimal, recall that the vector RN is also perpendicular to the point
RN on the sphere Sc'- in the normal space. It is a familiar result from calculus that if the distance
from a point p (off of S'-') to a point q (on S'-') is minimal, the vector p-q is perpendicular to

Sc-i.

In particular, the reflection R is found by requiring the normal component to be

RN = -iIRNIV; = - VLN"-

This aligns R with the projection of the view vector onto the normal space (Figure 3).The cosine

of the angle between R and V is easy to compute.

V-R = (VT+VN)-(RT+RN)

= VT.RT + VN.RN

The inner terms of the expansion are zero because the tangent and normal spaces are orthogonal.

Substituting for the components RT and RN yields the specular term for large codimensions:

T

Figure 4. The light vector L reflects off a tangent line T in 3-space, forming a cone of reflections R. For a given view vector V, the
closest unit reflection R has a component in the normal space N which is aligned with V's component lying in N.
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V.R = VT.Lr - VNV-ILN1VN

(2) V. R = VT LT - IIVNII IILNII

It is convenient to use V. -R to denote the dot product between V and the nearest unit vector in R.

Even when the codimension of the manifold is 1, equation (2) ignores which side of the manifold
is being illuminated, just like in the case of diffuse lighting (equation 1). When V is more than
900 away from the reflection space R, the dot product V. R becomes negative. The fact that it can
be negative is unrelated to the codimension, and it is reasonable to clamp it to zero. The rationale
is that when V. R is less than zero, V is so far from the reflection space that it receives no
reflected light at all.

The Phong model for calculating the specular intensity is therefore

(3) lspecular = ks 'source (clamp(V. R ))pr

where clamp(x)=0 when x< 0. The principles for specular illumination are thus (1) light travels in
paths of locally minimal length; and (2) the specular reflection is maximized exactly when the
view vector nears the reflection space.

This seems like a lot of effort to expend just to end up with the same equation used by Hanson
[Hanson93]. But the purpose of this derivation was not to replace the equations. The purpose was
to replace the descriptions "ad hoc" and "heuristic" by means of a physically-motivated deriva-
tion of the geometric behavior of light, arguing from principles independent of any particular
dimension.

3 Compensating For Large Codimensions

When the diffuse model is applied to a k-manifold in n-space, under different values of k and n, a
curious phenomenon occurs: the overall brightness increases with the codimension. The torus 72

is a convenient test object for demonstrating the effect. The surface can be imbedded in 4-space
as the cross-product of two circles by the parametrization

(x, y, z, w) = (r, cos0, r, sin0, r 2 cost, r2 sin0)

where r, and r 2 are the "outer" and "inner" radii. One can wrap a curve around 72 by letting
* d= AO for some constant A. The curve or surface can be illuminated in 4-space, or else
projected to 3-space and then illuminated there. Illustration 1 shows the result. Notice, especially,
how uniformly bright the case k = 1, n = 4 is.
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In order to understand this phenomenon, first suppose there are light sources uniformly distrib-

uted in all directions. How bright is a point p on the surface or the curve? The answer requires
integrating the illumination term over all directions of incoming light. In n-space, these directions
cover the unit (n- P 7phere.

3.1 Sudfe In 3-space

To integrate the uniform illumination of a point on a surface, let the tangent space T be the
x:_-plane and let the light vectors fill a unit sphere. The sphere S2 has the following parametriza-
tion and area element dS2.

(x, y, z) = (sine cosO, siný sinO, cost)

dS2 = Isin *1 dý dO

The total area A(S 2) of the sphere is 4z. The area-averaged diffuse illumination 12..3 at p (with

k=2, n=3) is given by

12.3 _ 2 ykdls J sina(L, Lr) dS2

A(s2) L S 
2

The constants kd and lsource will clutter the ensuing calculations; it is convenient to just ignore
them (by assuming they are both equal to 1, say). The rest of the computations follow this conven-
tion.

Evaluating the integral requires finding an expression for sina. It is easier to first find

cos 2 a(L, Lr) = L . Ur / IILrll by using the dot product. If L = (x, y, z) then L. = (x, 0, z). The sine

can be computed from the cosine as follows.

cos 2a(L, Lr) = I - sin2o sin 2 ý

The total illumination for a point on a surface is therefore

x 2x
12 . 3  _=1 1 2

11 J J IsinO sin tiIsin$ IdO d-
*-o 6-0

3.2 Curve In 3-spac

Compare the value 12, 3 to the average illumination of a point on a l-dimensional curve whose
tangent lies in the (0, 0, 1)-direction. The area-averaged illumination 11- 3 is given by the integral

11.3= _ L j sina(IL, Lr) dS2

A(S2) L.!S
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The light's tangent component is L1 = (0, 0, z), so the sine can be easily calculated from the

cosine.
cosa(L, LD) = Icos*l

sina(L, Tr) = Isin*I

The total illumination for a point on a curve is therefore

2 x
!1.3 = •L j Isini 1Isin*I dO d*

x/2 2x
= Z.2 J Jsin2*dOd = d -= 0.785

*-0 0.0

The point is nearly 60% brighter just because the curve has a lower dimension than the surface.
x 2x

11,3 = Z- J J Isin011sin0IdOdý
#.0,.0

x/2 2x:

- 2 J' fsin dO dO- - 0.785

#-069.0

3.3 Curve in 4-space

If the curve is in 4-space, the point becomes brighter still. The 3-sphere S3 has the following

parametrization and volume element.

(x, y, z, w) = (sinX sinO cosO, sinx siný sine, sinX cost, cosx)

d&3 = IsinO sin2 XI dO dý dX

The total "surface area" A(S 3) of the 3-sphere is 2X2. If the tangent is aligned with the (0, 0, 0, 1)

direction, the uniformly-lit point p has an area-averaged intensity which is calculated as follows.

IP,4 I ) J sina(L,LT) dS3

A(S') L IS'

xg x 2x1

= I I I IsinX1 Isin* sin2 X dOdddX s - 0.849

21x2 -o$0o-03x

Similar calculations show that 11. 2 = 2/k - 0.673 (a curve illuminated in 2-space), and that
12.4 = 2/3 - 0.667 (a surface illuminated in 4-space).
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3.4 Exponentlating the Sine

Why does the average intensity increase with the codimension? Consider a k-manifold in 2k+l
space. For most light vectors L, the (k+l)-dimensional normal space is closer to L than the
smaller k-dimensional tangent space is. Light vectors that are in, or near, the normal space make a
point look bright, so most light vectors reflect brightly when the codimension is large.

It is not enough simply to adjust the diffuse coefficient kd to compensate for the codimension.
Consider what it means for the average illumination to approach the limit of 1: the integrand is
bounded above by 1, so it must in fact attain that bound almost everywhere. In almost every
direction that light shines, it brightly illuminates almost all of the manifold.

Probably no one is very interested in illuminating a flat object using infinitely many point-light
sources distributed uniformly in all directions. The typical situation is complementary to it: there
may be a single light source, but the manifold's tangents vary continuously over many (if not all)
directions. The visual result is generally the same as the theory predicts: a manifold becomes
more uniformly bright when its codimension increases.

A simple way to increase the contrast is to exponentiate using a power p(k, n). This exponent
compensates for the surfeit of diffuse reflection. By modifying the diffuse term to be

(5) Icomp = kd Isource sin p(k, n) a(L, Lr)

the brightness is balanced so that a k-manifold in n-space approximates the contrast displayed by
a surface in 3-space. The only difficulty is in choosing a suitable value of the exponent p(k, n). It
is natural to choose a standard of p(2, 3) = 1 since surface-shading in 3-space is the paragon of
visual comprehension. For other values of k and n, one proceeds by comparing the averaged inte-
grated intensities 1 k, n to the averaged integrated intensities 12.3 under the new compensating
model of equation (5), finding a value of p(k, n) that makes them equal. The integration is some-
what laborious even for low dimensions, so it is relegated to the appendix. The results are
summarized in Table 1, and are applied in Illustration 2.

n=2 n=3 n=4

k = 1 p=2 p = 4.76 35  p = 7.6737

k=2 - p=l p=2

Table I. Values of the power p used by equation (5) for compensated diffuse illumination of a k-manifold in n-space.
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4 Mixing Dimensions
This section describes how the large-codimension model for illumination (equations I and 2) can
be used to render anisotropic reflectors and furry surfaces. These two examples exhibit a mix of
diverse codimensions: 1-dimensional grooves on a 2D surface, or 1-dimensional fibers
protruding from a 2D surface. The solution presented here applies to other combinations of codi-
mensions as well.

A manifold may be supplied with one or more vector fields. For example, an isosurface of
constant pressure in a fluid flow might possess ID velocity vectors at every point together with a
2D tangent plane. If vector spaces of different dimensions are associated with a point, one is free
to select which space will participate in the lighting calculation. In the case of the pressure-
surface, the tangent space reflects like a 2-manifold, whereas the velocity field reflects like a
1-manifold at each sample point.

4.1 Inheritance of Self-shadowing

Section 2.2 noted that a manifold of codimension 1 enjoys the special property of possessing, at
most, two sides. The local illumination model can thus simulate the "global" effect of self-shad-
owing. Consider a surface M with a 2D tangent space T and a ID vector field V in 3-space. A
point p in M is in shadow if its outward normal aims away from the light source. With the light
vector directed away from the source, -N- L is negative for a self-shadowed point. Assigning a
unique normal vector is only possible when T (of codimension 1) governs the illumination, not V
(of codimension 2). That is unfortunate when one desires to use V, since self-shadowing enhances
the fidelity of a rendered image.

The remedy is to let V inherit the information (namely N . L) that informs the model of self-shad-
owing. To illuminate p using V, the reflection terms arising from V are conditioned by the
clamped cosine term arising from the 2-dimensional space T:

(6) 'condidoned = (clamp( -N. L) (diffuse + Jspecular)

The vector space of larger dimension is consulted in order to modify the illumination of a vector
space of smaller dimension.

Illustration 3 shows various renderings of a sphere in 3-space endowed with a vector field V
which is tangent to the sphere and aligned in "north-south" directions. Intuitively, this is like a
satin ball used as a Christmas ornament. The satin fibers are the 1-dimensional integral curves
through V. The material properties are defined by the coefficients kambien = 0. 1, kd = 0.5, ks = 1.0
and an intrinsic color (r, g, b) = (1.0, 0.25, 0.30). In the first image, A, the Kajiya-Hanson model
is applied to V. The rendered curves are just integral curves through the vector field. In the second

13
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image, B, the surface is illuminated using the 2D tangents T and applying the clamp function.
The third image, C, shows the result of illuminating according to V and interpolating the result
over the polygon mesh. The fourth image, D, shows the result of conditioning the solution of
image C according to equation (6).

4.2 Attenuation by a Vector Field

Equation (6) shows how the tangent space can be used to simulate global effects in illuminating
the ID vector space over p. The situation can be reversed as well. In the "satin ball" example,
each fiber VP was contained in the tangent space Tp at each point p. That is, each fiber was
constrained to fit the underlying surface. But that need not be the case. Real, physical fibers may
protrude outward from a surface, partially shadowing the surface from light. It is possible to
simulate this global effect by attenuating the light that reaches Tp. A simple model for attenua-
tion requires the incoming energy to decay exponentially with the distance that it passes through

an absorbing medium of density p (p being between 0 and 1). The medium is the vector field V.
The light generally passes through the medium twice: once on the way in, and again on its
reflected path back out. In either case, the distance that it passes through the medium is given by

(7) d = h / sin a

where h is the height (perpendicular to Tp) of a fiber at p and a is the angle between Tp and the
light (entering) or between Tp and the eye (exiting). The attenuated light therefore has energy

latien given by

(8) laten = 'source (1 p)d

Illustration 4 shows how conditioning and attenuating the illumination of a mixed-dimensional

object can yield convincing results on a torus with radii r, = 1.5, r2 = 0.75. The fibers have a
material property defined by the coefficients kambient -= 0.1, kd = 0.9, kspec = 0.1, p = 0.02 and an
intrinsic color (r, g, b) = (1.0, 1.0, 1.0) (white). In image A, the vector fields are individually illu-
minated according to the local model of equation (1). In image B, the vectors are conditioned

according to equation (6), using the surface normals of the underlying torus. In image C, the light
at the base of each vector is both conditioned and attenuated. Light at the tip is conditioned only.
Each vector is shaded as a linearly-interpolated segment. The difference between B and C is espe-
cially visible in the lower halves: the fibers blend together in B but are individually visible in C.

5 Running Time
The most complex image (Illustration 4C) contains 409,600 line segments. The fibers are proce-
durally generated from jittered interpolated samples on the 128x128 mesh of the torus. The
image was rendered on a Silicon Graphics Indigo2 (75mHZ R4400 MIPS processor, 16KB caches,
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and 128um memory) with Extreme graphics, which draws about 150,000 de-aliased Gouraud-

shaded vectors per second. The image required 2.2 seconds to compute the illumination on the
mesh, 8 seconds to generate the fibers, and 2.5 seconds to draw the fibers. This compares very
favorably to image-order (ray-traced) solutions.

6 Conclusions
The diffuse and specular reflection of a k-manifold in n-space can be derived by appealing to four
basic principles:

"* The re-radiated light's intensity varies with the energy delivered by the incident beam;

"* The manifold re-radiates isotropically;

"* Light travels in paths of locally minimal length; and

"* The specular reflection is maximized exactly when the view vector nears the reflection space.

The resulting equations need to be modified in certain conditions. First, a large codimension

generally results in a uniformly-bright object. This effect is ameliorated by exponentiating part of
the diffuse term. The exponent can be found via an averaged integration so that the total contrast
matches that of a surface in 3-space. Second, a codimension- 1 vector space can condition the illu-
mination of an associated vector space of smaller dimension. This permits the smaller space to
exhibit self-shadowing. Third, light may be attenuated as it passes through one vector space to
reach another. These effects can combine to create effective images of anisotropic and furry
surfaces in 3-space. They may also be applied to visualize vector fields over manifolds of higher

dimension in large-dimensional spaces.
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Appendix

This section calculates the area-averaged compensated illumination for various combinations of k
and n. This amounts to solving

Ik,n _M1 f sinP a(L, L) dS"n- = 12,3 = 1comp AS- ) LES --

for the exponent p = p(k, n). The definite integral of the exponentiated sine can be looked up in a
table: it involves a quotient of gamma functions. Section 3 gives the area element and the volume
element for S2 and S3. These quantities have been substituted in the following integrals.

Xt/2

j122 2

comp - 4f sinP" '- dOd

'comp F- q2pin+~dd = 3,4 )
0.0o 2o

g/z/2 2x 2

P, - 14 2 j jSinp + 2 XsndO dý d 1

comp -2n --O-0 2 +4i"

_ /2x/2 2x q +3j) _r&3

P,2.4 - -1 4fj f f sinp +2 X sinP 1 dO d# dX -2= -

com 2n p2

To find p(k, n), one merely sets I k, nCOMP = 1/2 and solves for p. The numerical solutions are listed
in Table 1.
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